Abstract
Surface-enhanced Raman spectroscopy (SERS) offers a distinctive vibrational fingerprint of the molecules and has led to widespread applications in medical diagnosis, biochemistry, and virology. With the rapid development of artificial intelligence (AI) technology, AI-enabled Raman spectroscopic techniques, as a promising avenue for biosensing applications, have significantly boosted bacteria identification. By converting spectra into images, the dataset is enriched with more detailed information, allowing AI to identify bacterial isolates with enhanced precision. However, previous studies usually suffer from a trade-off between high-resolution spectrograms for high-accuracy identification and short training time for data processing. Here, we present an efficient bacteria identification strategy that combines deep learning models with a spectrogram encoding algorithm based on wavelet packet transform and Gramian angular field techniques. In contrast to the direct analysis of raw Raman spectra, our approach utilizes wavelet packet transform techniques to compress the spectra by a factor of 1/15, while concurrently maintaining state-of-the-art accuracy by amplifying the subtle differences via Gramian angular field techniques. The results demonstrate that our approach can achieve a 99.64 % and a 90.55 % identification accuracy for two types of bacterial isolates and thirty types of bacterial isolates, respectively, while a 90 % reduction in training time compared to the conventional methods. To verify the model's stability, Gaussian noises were superimposed on the testing dataset, showing a specific generalization ability and superior performance. This algorithm has the potential for integration into on-site testing protocols and is readily updatable with new bacterial isolates. This study provides profound insights and contributes to the current understanding of spectroscopy, paving the way for accurate and rapid bacteria identification in diverse applications of environment monitoring, food safety, microbiology, and public health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.