Abstract

ABSTRACTTransient flow caused by air expulsion is investigated. Earlier experimental studies involved the horizontal or horizontal–vertical pipe cases, or the vertical pipe case with relatively less test range. This paper focuses on the vertical pipe case with much broader ranges of orifice size and air length to more completely characterize the transient response. Observations show air release undergoes two distinct stages: stage 1 with pressurization, expansion and release of air pocket; stage 2 with an impacting water hammer pressure when water reaches the pipe end. Two types of pressure oscillation patterns are found, depending on orifice size. When orifice sizes are small, air cushioning effect prevents high water hammer pressures from being generated. As orifice size increases, the water hammer pressure is dominant. As initial air length increases, the maximum pressure firstly increases and then decreases. An elastic-water model could well reproduce the measured air pressure oscillations and impact pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.