Abstract

The pressure within a trapped air pocket in a rapidly filling horizontal pipe is investigated both experimentally and analytically. The downstream end of the pipe is either sealed to form a dead end or outfitted with an orifice to study the effects of air leakage on the pressure. Three types of pressure oscillation patterns are observed, depending on the size of the orifice. When no air is released or orifice sizes are small, the cushioning effects of the air pocket prevents the water column from impacting on the pipe end and from generating high water hammer pressures. However, the maximum pressure experienced may still be several times the upstream driving pressure. When the orifice size is very large, the air cushioning effect vanishes and the water hammer pressure is dominant. For intermediate orifice sizes, the pressure oscillation pattern consists of both long-period oscillations (while the air pocket persists) followed by short-period pressure oscillations (once water hammer pressures dominate). Air leakage is observed to play a significant role in increasing the magnitude of the observed pressures during rapid filling, resulting in peak pressures up to 15 times the upstream head. An analytical model, capable of calculating the air pocket pressure and the peak pressure when the water column slams into the end of the pipe, is developed and results are compared with those of experiments. The model was successful in determining the amplitude of the peak pressure for the entire orifice range and was able to simulate the pressure oscillation pattern for the case of a negligible water hammer impact effect. Although the model was unable to simulate the pressure oscillation pattern for substantial air release, it was able to predict the type of pressure oscillation behavior and the peak pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.