Abstract
1. We investigated the effect of oestradiol on basolateral potassium channels in human colonic epithelium. 2. Ion transport was quantified using short circuit current (I:(sc)) measurements of samples mounted in Ussing chambers. Serosal K transport was studied using nystatin permeabilization of the apical membrane. Intracellular pH changes were quantified using spectroflouresence techniques. 3. Experiments were performed with either 10 nM or 1 microM Ca(2+) in the apical bathing solution. With 10 nM Ca(2+) in the apical bathing solution addition of oestradiol (1 nM) to the basolateral bath produced a rapid increase in current (delta I(K)=11.2+/-1.2 microA.cm(-2), n=6). This response was prevented by treatment of the serosal membrane with tolbutamide (1 microM). With 1 microM Ca(2+) in the apical bathing solution addition of oestradiol produced a rapid fall in current (delta I(K)=-12.8+/-1.4 microA.cm(-2)), this response was prevented by treatment of the basolateral membrane with tetra-pentyl-ammonium (TPeA). These responses were rapid and occurred independently of protein synthesis. 4. Inhibition of basolateral Na(+)/H(+) exchange with either amiloride or a low sodium bathing solution prevented this response. These responses were prevented by inhibition of protein kinase C (PKC) with bis-indolyl-maleimide. 5. Oestradiol (1 nM) produced a rapid intracellular alkanization (mean increase=0.11 pH units; n=6; P<0.01). 6. These results suggest that oestradiol rapidly modulates serosal K transport in human colon. These effects depend upon intact Na(+)/H(+) exchange and protein kinase C. We propose a non-classical, possibly membrane linked, mechanism for oestradiol action in human colonic epithelium.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have