Abstract

In this experimental study, a portable biosensor was developed to detect β-human chorionic gonadotropin (β-hCG), which is extensively used in pregnancy tests and serves as a biomarker for ectopic pregnancy. The sensor used is an electric-double-layer field-effect transistor biosensor with the extended-gate design. Bias voltage is applied on the sensor to measure the resulting drain current signals. Gold electrode surface is functionally activated with an anti-β-hCG antibody to capture β-hCG protein. Fluorescence imaging technique is utilized to confirm the surface functionalization. The biosensor demonstrates a dynamically wide range of molecules as detection targets at very low sample concentrations, which shows the potential to detect ectopic pregnancy in very early stages and easily keep track of its periodic changes. It can be produced en masse and does not use additional labels/reagents or pre-processing techniques for the sample. This biosensor can significantly reduce the manufacturing costs and is comparable with the currently available commercial ß-hCG assays. It is suitable for early diagnosis of ectopic pregnancy with low cost and easy operation at home with urine samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call