Abstract

Internal flows through rod assemblies are commonly found in heat exchangers, steam generators, and nuclear reactors. One of the fuel assembly designs considered for liquid metal-cooled reactors utilizes wires helically wrapped around each fuel rod as spacers. The wires keep the fuel pins separated, enhancing the turbulent mixing, and heat transfer, but also affecting the pressure drop. It is of interest the understanding of the fluid flow phenomena in the sodium-cooled fast reactor as it is one of the Generation IV advanced reactor designs and it has been a motivating topic of research for the last decade. A wire-wrapped fuel assembly replica with 61-pins has been in operation at the Thermal-Hydraulic Research Laboratory of Texas A&M University. This facility produced high-fidelity velocity and pressure drop data for validation of computational fluid dynamics codes. This study investigates the effects of geometrical features and operating conditions on the flow behavior of the 61-pin wire wrapped bundle using Reynolds-Averaged Navier-Stokes (RANS) models to predict the axial and transverse pressure drops for a range of Reynolds numbers from 1,270 to 100,000. The friction factor predictions were in satisfactory agreement with the experimental data and the Upgraded Chen and Todreas correlation. The internal subchannel velocity results were compared with experimental data and Large Eddy Simulations (LES) and found in reasonable agreement. This study demonstrates that RANS is a suitable approach in predicting velocity and pressure fields in wire-wrapped rod bundles, with a relatively low computational effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.