Abstract

Modeling of Unmanned Aerial Vehicles (UAV) propellers in a global, multidisciplinary aeroacoustic optimization was investigated. The modeling consists of three aspects: geometry, aerodynamics, and aeroacoustics. Firstly, a parametric geometry model was established using chord, twist, and sweep distributions along the radius, defined by splines to ensure smoothness. Additionally, airfoil parameters including maximum camber and its position, as well as the position of maximum thickness, were added. Secondly, a blade geometry-resolved aerodynamic model based on steady RANS was established. A two-equation SST turbulence model was used for compressible flow with periodic boundary conditions. Thirdly, an aeroacoustic model for far-field tonal noise calculation was defined, based on the Ffowcs Williams and Hawkings analogy and a RANS solution. A global sensitivity analysis was performed to establish the importance of individual design variables. Consequently, surrogate modeling-based optimization strategy was devised to efficiently establish Pareto front of propeller geometries in multi-objective aeroacoustic optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call