Abstract

The molecular mechanisms underlying bone destruction by invading oral cancer are not well understood. Using IHC, we demonstrated that receptor activator of nuclear factor-κB ligand (RANKL)-positive fibroblasts and cancer cells were located at sites of bone invasion in human oral cancers. HSC3 and HO-1-N-1, human oral cancer cell lines, expressed RANKL and stimulated Rankl expression in the UAMS-32 murine osteoblastic cell line. We discriminated the roles of RANKL synthesized by stromal cells and cancer cells in cancer-associated bone resorption by using species-specific RANKL antibodies against murine RANKL and human RANKL, respectively. Osteoclastogenesis induced by the conditioned medium of HSC3 and HO-1-N-1 cells in a co-culture of murine bone marrow cells and UAMS-32 cells was inhibited by the addition of antibodies against either mouse or human RANKL. HSC3-induced bone destruction was greatly inhibited by the administration of anti-mouse RANKL antibody in a xenograft model. HO-1-N-1-induced bone destruction was inhibited by the administration of either anti-mouse or anti-human RANKL antibody. Bone destruction induced by the transplantation of human RANKL-overexpressing cells (HSC3-R2) was greatly inhibited by the injection of anti-human RANKL antibody. The present study revealed that RANKL produced by both stromal and cancer cells is involved in oral cancer-induced osteoclastic bone resorption. These results provide important information for understanding the cellular and molecular basis of cancer-associated bone destruction and the mechanism of action underlying RANKL antibody (denosumab) therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.