Abstract
ABSTRACT Objective: Interleukin-17 (IL-17), produced by T helper (Th)-17 cells, is a potent regulator of bone homeostasis. Osteoblasts are key cells that orchestrate inflammatory bone destruction and bone remodeling. This study examines the effect of different concentrations of IL-17 on osteogenesis and receptor activator of nuclear factor-kappa B ligand (RANKL) expression of primary osteoblasts. Methods: First, the growth of primary osteoblasts was evaluated. Second, we assessed the effects of IL-17 on the level of autophagy and the related Janus activated kinase 2 (JAK2) and downstream signal transducer and activator of transcription 3 (STAT3) signaling pathway. Next, osteogenic activity in different concentrations of IL-17 was tested. Finally, the specific JAK2/STAT3 signaling pathway inhibitor AG490 and autophagy inhibitor 3-MA were used to investigate the involvement of this pathway and autophagy in IL-17-induced regulation of RANKL expression. Results: Initially, we found that IL-17 treatment promoted growth of osteoblasts in a time- and dose-dependent manner. Next, we showed that low levels of IL-17 promoted autophagy activity, whereas the opposite was observed at high levels of IL-17. Moreover, high levels of IL-17 activated the JAK2/STAT3 signaling pathway, although this effect was reversed by upregulation of autophagy. Furthermore, our findings indicated that high concentrations of IL-17 promoted the differentiation, calcification, and RANKL expression of murine osteoblasts via activation of the JAK2/STAT3 pathway. Importantly, downregulation of autophagy at high IL-17 concentrations further enhanced RANKL expression via suppressing the JAK2/STAT3 cascade. Conclusion: Overall, our findings demonstrate, for the first time, that IL-17 modulates RANKL expression of osteoblasts through an autophagy–JAK2-STAT3 signaling pathway, thus affecting bone metabolism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have