Abstract

Abstract In this article, we revisit Rankin–Selberg integrals established by Jacquet, Piatetski-Shapiro and Shalika. We prove the equality of Rankin–Selberg local factors defined with Schwartz–Bruhat functions and the factors attached to good sections, introduced by Piatetski-Shapiro and Rallis. Moreover, we propose a notion of exceptional poles in the framework of good sections. For cases of Rankin–Selberg, Asai and exterior square L-functions, the exceptional poles are consistent with well-known exceptional poles which characterize certain distinguished representations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.