Abstract

We create the first computationally tractable Bayesian statistical model for learning unknown correlations among estimated alternatives in fully sequential ranking and selection. Although correlations allow us to extract more information from each individual simulation, the correlation structure is itself unknown, and we face the additional challenge of simultaneously learning the unknown values and unknown correlations from simulation. We derive a Bayesian procedure that allocates simulations based on the value of information, thus exploiting the correlation structure and anticipating future changes to our beliefs about the correlations. We test the model and algorithm in a simulation study motivated by the problem of optimal wind farm placement, and obtain encouraging empirical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.