Abstract
SummaryAutomated or data-driven bandwidth selection methods tend to break down in the presence of correlated errors. While this problem has previously been studied in the fixed design setting for kernel regression, the results were applicable only when there is knowledge about the correlation structure. This article generalizes these results to the random design setting and addresses the problem in situations where no prior knowledge about the correlation structure is available. We establish the asymptotic optimality of our proposed bandwidth selection criterion based on kernels $K$ satisfying $K(0)=0$.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.