Abstract

Abstract For regression models where data are obtained from sampling surveies, the statistical analysis is often based on approaches that are either non-robust or inefficient. The handling of survey data requires more appropriate techniques, as the classical methods usually result in biased and inefficient estimates of the underlying model parameters. This article is concerned with the development of a new approach of obtaining robust and efficient estimates of regression model parameters when dealing with survey sampling data. Asymptotic properties of such estimators are established under mild regularity conditions. To demonstrate the performance of the proposed method, Monte Carlo simulation experiments are carried out and show that the estimators obtained from the proposed methodology are robust and more efficient than many of those obtained from existing approaches, mainly if the survey data tend to result in residuals with heavy-tailed or skewed distributions and/or when there are few gross outliers. Finally, the proposed approach is illustrated with a real data example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.