Abstract
Data in social sciences are typically non-normally distributed and characterized by heavy tails. However, most widely used methods in social sciences are still based on the analyses of sample means and sample covariances. While these conventional methods continue to be used to address new substantive issues, conclusions reached can be inaccurate or misleading. Although there is no 'best method' in practice, robust methods that consider the distribution of the data can perform substantially better than the conventional methods. This article gives an overview of robust procedures, emphasizing a few that have been repeatedly shown to work well for models that are widely used in social and behavioural sciences. Real data examples show how to use the robust methods for latent variable models and for moderated mediation analysis when a regression model contains categorical covariates and product terms. Results and logical analyses indicate that robust methods yield more efficient parameter estimates, more reliable model evaluation, more reliable model/data diagnostics, and more trustworthy conclusions when conducting replication studies. R and SAS programs are provided for routine applications of the recommended robust method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: British Journal of Mathematical and Statistical Psychology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.