Abstract

Facial micro-expression is a subtle and involuntary facial expression that exhibits short duration and low intensity where hidden feelings can be disclosed. The field of micro-expression analysis has been receiving substantial awareness due to its potential values in a wide variety of practical applications. A number of studies have proposed sophisticated hand-crafted feature representations in order to leverage the task of automatic micro-expression recognition. This paper employs a dynamic image computation method for feature extraction so that features can be learned on certain localized facial regions along with deep convolutional networks to identify micro-expressions presented in the extracted dynamic images. The proposed framework is simple as opposed to other existing frameworks which used complex hand-crafted feature descriptors. For performance evaluation, the framework is tested on three publicly available databases, as well as on the integrated database in which individual databases are merged into a data pool. Impressive results from the series of experimental work show that the technique is promising in recognizing micro-expressions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.