Abstract
We consider the NP-hard problem of finding the closest rank-one binary tensor to a given binary tensor, which we refer to as the rank-one Boolean tensor factorization (BTF) problem. This optimization problem can be used to recover a planted rank-one tensor from noisy observations. We formulate rank-one BTF as the problem of minimizing a linear function over a highly structured multilinear set. Leveraging on our prior results regarding the facial structure of multilinear polytopes, we propose novel linear programming relaxations for rank-one BTF. We then establish deterministic sufficient conditions under which our proposed linear programs recover a planted rank-one tensor. To analyze the effectiveness of these deterministic conditions, we consider a semirandom model for the noisy tensor and obtain high probability recovery guarantees for the linear programs. Our theoretical results as well as numerical simulations indicate that certain facets of the multilinear polytope significantly improve the recovery properties of linear programming relaxations for rank-one BTF. Funding: A. Del Pia is partially funded by the Air Force Office of Scientific Research [Grant FA9550-23-1-0433]. A. Khajavirad is partially funded by the Air Force Office of Scientific Research [Grant FA9550-23-1-0123].
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have