Abstract

A 16-station wear simulator of the pin-on-disc type, called RandomPOD, was designed, built, and validated. The primary area of application of the RandomPOD is wear studies of orthopaedic biomaterials. The type of relative motion between the bearing surfaces, generally illustrated as shapes of slide tracks, has been found to have a strong effect on the type and amount of wear produced. The computer-controlled RandomPOD can be programmed to produce virtually any slide track shape and load profile. In the present study, the focus is on the biomechanically realistic random variation in the track shape and load. In the reference test, the established combination of circular translation and static load was used. In addition, the combinations of random motion/static load, and circular translation/random load were included. The pins were conventional ultra-high molecular weight polyethylene (UHMWPE), the discs were polished CoCr, and the lubricant was diluted calf serum. The UHMWPE wear factor resulting from random motion was significantly higher than that resulting from circular translation. This was probably caused by the fact that in the random motion the direction of sliding changed more than in circular translation with the same sliding distance. The type of load, random vs. static, was unimportant with respect to the wear factor produced. The principal advantage of using the present random track is that possible unrealistic wear phenomena related to the use of fixed track shapes can be avoided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call