Abstract
Circular translation pin-on-disk (CTPOD) tests were performed for ultrahigh molecular weight polyethylene (UHMWPE) with a view to reproducing wear mechanisms that prevail in total hip prostheses. The contact surface diameter varied from 3.0 mm to 30 mm, while the slide track diameter was fixed, 10 mm. The counterface was polished CoCr, and the lubricant was diluted alpha calf serum. Either the nominal contact pressure (1.1 MPa) or the load (126 N) was kept constant. With a constant contact pressure, the wear factor decreased steeply when the contact diameter exceeded the slide track diameter, apparently because the wear debris was not readily conveyed away from the contact. With constant load, both the wear factor and the coefficient of friction increased linearly with increasing contact area. This trend was in agreement with clinical observations that the wear rate of UHMWPE acetabular cups increased with increasing femoral head size. With nominal contact pressures approaching 10 MPa however, the bearing surface topography markedly differed from clinical observations. This was probably due to overheating of the contact and plastic deformation that resulted in the formation of protuberances not seen clinically. The present study emphasized the importance of test parameters in the pin-on-disk wear screening of prosthetic joint materials. It appeared that the contact surface diameter of the flat-on-flat test should be below the slide track diameter, and that the nominal contact pressure should be of the order of 1 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.