Abstract
The scenario-based optimization approach (`scenario approach') provides an intuitive way of approximating the solution to chance-constrained optimization programs, based on finding the optimal solution under a finite number of sampled outcomes of the uncertainty (`scenarios'). A key merit of this approach is that it neither assumes knowledge of the uncertainty set, as it is common in robust optimization, nor of its probability distribution, as it is usually required in stochastic optimization. Moreover, the scenario approach is computationally efficient as its solution is based on a deterministic optimization program that is canonically convex, even when the original chance-constrained problem is not. Recently, researchers have obtained theoretical foundations for the scenario approach, providing a direct link between the number of scenarios and bounds on the constraint violation probability. These bounds are tight in the general case of an uncertain optimization problem with a single chance constraint. However, this paper shows that these bounds can be improved in situations where the constraints have a limited `support rank', a new concept that is introduced for the first time. This property is typically found in a large number of practical applications---most importantly, if the problem originally contains multiple chance constraints (e.g. multi-stage uncertain decision problems), or if a chance constraint belongs to a special class of constraints (e.g. linear or quadratic constraints). In these cases the quality of the scenario solution is improved while the same bound on the constraint violation probability is maintained, and also the computational complexity is reduced.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have