Abstract
In this paper we propose local approximation spaces for localized model order reduction procedures such as domain decomposition and multiscale methods. Those spaces are constructed from local solutions of the partial differential equation (PDE) with random boundary conditions, yield an approximation that converges provably at a nearly optimal rate, and can be generated at close to optimal computational complexity. In many localized model order reduction approaches like the generalized finite element method, static condensation procedures, and the multiscale finite element method local approximation spaces can be constructed by approximating the range of a suitably defined transfer operator that acts on the space of local solutions of the PDE. Optimal local approximation spaces that yield in general an exponentially convergent approximation are given by the left singular vectors of this transfer operator [I. Babu\v{s}ka and R. Lipton 2011, K. Smetana and A. T. Patera 2016]. However, the direct calculation of these singular vectors is computationally very expensive. In this paper, we propose an adaptive randomized algorithm based on methods from randomized linear algebra [N. Halko et al. 2011], which constructs a local reduced space approximating the range of the transfer operator and thus the optimal local approximation spaces. The adaptive algorithm relies on a probabilistic a posteriori error estimator for which we prove that it is both efficient and reliable with high probability. Several numerical experiments confirm the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.