Abstract

BackgroundRobot-assisted ankle-foot-orthosis (AFO) can provide immediate powered ankle assistance in post-stroke gait training. Our research team has developed a novel lightweight portable robot-assisted AFO which is capable of detecting walking intentions using sensor feedback of wearer’s gait pattern. This study aims to investigate the therapeutic effects of robot-assisted gait training with ankle dorsiflexion assistance.MethodsThis was a double-blinded randomized controlled trial. Nineteen chronic stroke patients with motor impairment at ankle participated in 20-session robot-assisted gait training for about five weeks, with 30-min over-ground walking and stair ambulation practices. Robot-assisted AFO either provided active powered ankle assistance during swing phase in Robotic Group (n = 9), or torque impedance at ankle joint as passive AFO in Sham Group (n = 10). Functional assessments were performed before and after the 20-session gait training with 3-month Follow-up. Primary outcome measure was gait independency assessed by Functional Ambulatory Category (FAC). Secondary outcome measures were clinical scores including Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), Timed 10-Meter Walk Test (10MWT), Six-minute Walk Test (SMWT), supplemented by gait analysis. All outcome measures were performed in unassisted gait after patients had taken off the robot-assisted AFO. Repeated-measures analysis of covariance was conducted to test the group differences referenced to clinical scores before training.ResultsAfter 20-session robot-assisted gait training with ankle dorsiflexion assistance, the active ankle assistance in Robotic Group induced changes in gait pattern with improved gait independency (all patients FAC ≥ 5 post-training and 3-month follow-up), motor recovery, walking speed, and greater confidence in affected side loading response (vertical ground reaction force + 1.49 N/kg, peak braking force + 0.24 N/kg) with heel strike instead of flat foot touch-down at initial contact (foot tilting + 1.91°). Sham Group reported reduction in affected leg range of motion (ankle dorsiflexion − 2.36° and knee flexion − 8.48°) during swing.ConclusionsRobot-assisted gait training with ankle dorsiflexion assistance could improve gait independency and help stroke patients developing confidence in weight acceptance, but future development of robot-assisted AFO should consider more lightweight and custom-fit design.Trial registrationClinicalTrials.gov NCT02471248. Registered 15 June 2015 retrospectively registered.

Highlights

  • Robot-assisted ankle-foot-orthosis (AFO) can provide immediate powered ankle assistance in poststroke gait training

  • Stroke is caused by intracranial haemorrhage or thrombosis, which cuts off arterial supply to brain tissue and usually damages the motor pathway of the central nervous system affecting one side of the body

  • Total 54 chronic stroke patients were screened for eligibility from June 2015 to November 2016

Read more

Summary

Introduction

Robot-assisted ankle-foot-orthosis (AFO) can provide immediate powered ankle assistance in poststroke gait training. To maintain sufficient foot clearance in swing phase, people with dropped foot have to compensate either by hip hiking with exaggerated flexion in hip and knee joints, or circumduction gait with the body leaning on the unaffected side and the leg swinging outward through an arc away from the midline [4,5,6] These inefficient asymmetric gait patterns hinder the walking ability and contribute to slower walking speed [7, 8], increasing risk of falling [9, 10], and greater energy expenditure [11]. Poor mobility results in sedentary lifestyle and limited physical exercise [12], which further deteriorates lower-limb functionality

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call