Abstract
We present randomized algorithms based on block Krylov subspace methods for estimating the trace and log-determinant of Hermitian positive semi-definite matrices. Using the properties of Chebyshev polynomials and Gaussian random matrix, we provide the error analysis of the proposed estimators and obtain the expectation and concentration error bounds. These bounds improve the corresponding ones given in the literature. Numerical experiments are presented to illustrate the performance of the algorithms and to test the error bounds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have