Abstract
Nonlocal quantum fluids emerge as dark-matter models and tools for quantum simulations and technologies. However, strongly nonlinear regimes, like those involving multi-dimensional self-localized solitary waves, are marginally explored for what concerns quantum features. We study the dynamics of 3D+1 solitons in the second-quantized nonlocal nonlinear Schrödinger–Newton equation. We theoretically investigate the quantum diffusion of the soliton center of mass and other parameters, varying the interaction length. 3D+1 simulations of the Ito partial differential equations arising from the positive P-representation of the density matrix validate the theoretical analysis. The numerical results unveil the onset of non-Gaussian statistics of the soliton, which may signal quantum-gravitational effects and be a resource for quantum computing. The non-Gaussianity arises from the interplay between the soliton parameter quantum diffusion and the stable invariant propagation. The fluctuations and the non-Gaussianity are universal effects expected for any nonlocality and dimensionality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have