Abstract

In this paper we analyse random walk on a fractal structure, specifi- cally fractal curves, using the recently develped calculus for fractal curves. We consider only unbiased random walk on the fractal stucture and find out the corresponding probability distribution which is gaussian like in nature, but shows deviation from the standard behaviour. Moments are calculated in terms of Euclidean distance for a von Koch curve. We also analyse Levy distribution on the same fractal structure, where the dimen- sion of the fractal curve shows significant contribution to the distrubution law by modyfying the nature of moments. The appendix gives a short note on Fourier transform on fractal curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.