Abstract
Inspired by classical puzzles in geometry that ask about probabilities of geometric phenomena, we give an explicit formula for the probability that a random triangle on a flat torus is homotopically trivial. Our main tool for this computation involves reducing the problem to a new invariant of measurable sets in the plane that is unchanged under area-preserving affine transformations. Our result show that this probability is minimized at all rectangular tori and maximized at the regular hexagonal torus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.