Abstract
Random telegraph signals (RTS) in the drain current of deep-submicron n-MOSFET's are investigated at low and high lateral electric fields. RTS are explained both by number and mobility fluctuations due to single electron trapping in the gate oxide. The role of the type of the trap (acceptor or donor), the distance of the trap from the Si-SiO/sub 2/ interface, the channel electron concentration (which is set by the gate bias) and the electron mobility (which is affected by the drain voltage) is demonstrated. The effect of capture and emission on average electron mobility is demonstrated for the first time. A simple theoretical model explains the observed effect of electron heating on electron capture. The mean capture time depends on the local velocity and the nonequilibrium temperature of channel electrons near the trap. The difference between the forward and reverse modes (source and drain exchanged) provides an estimate of the effective trap location along the channel.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.