Abstract
Let Qn denote a random symmetric (n×n)-matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values 0 and 1 with probability 1/2). We prove that Qn is nonsingular with probability 1-O(n-1/8+δ) for any fixed δ>0. The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.