Abstract
The eigenvalue problem of quantum many-body systems is a fundamental and challenging subject in condensed matter physics, since the dimension of the Hilbert space (and hence the required computational memory and time) grows exponentially as the system size increases. A few numerical methods have been developed for some specific systems, but may not be applicable in others. Here we propose a general numerical method, Random Sampling Neural Networks (RSNN), to utilize the pattern recognition technique for the random sampling matrix elements of an interacting many-body system via a self-supervised learning approach. Several exactly solvable 1D models, including Ising model with transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to test the applicability of RSNN. Pretty high accuracy of energy spectrum, magnetization and critical exponents etc. can be obtained within the strongly correlated regime or near the quantum phase transition point, even the corresponding RSNN models are trained in the weakly interacting regime. The required computation time scales linearly to the system size. Our results demonstrate that it is possible to combine the existing numerical methods for the training process and RSNN to explore quantum many-body problems in a much wider parameter regime, even for strongly correlated systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.