Abstract
The random response and mean crossing rate of the fractional order nonlinear system with impact are investigated through the equivalent nonlinearization technique. The random additive excitation is Gaussian white noise, while the impact is described by a phenomenological model, which is developed from the actual impact process experiments. Based on the equivalent nonlinearization technique, one class of random nonlinear system with exact probability density function (PDF) solution of response is selected. The criterion of the appropriate equivalent nonlinear system is the similarity with the original system on the damping, stiffness, and inertia. The more similar, the higher the precision. The optimal unknown parameters of the equivalent random nonlinear system in the damping and stiffness terms are determined by the rule of smallest mean-square difference. In the view of equivalent nonlinearization technique, the response of the original system is the same as that of the equivalent system with the optimal unknown parameters in analytical solution manner. Then, the mean crossing rate is derived from stationary PDF. The consistence between the results from proposed technique and Monte Carlo simulation reveals the accuracy of the proposed analytical procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.