Abstract
A new technique is proposed to obtain an approximate probability density for the response of a general nonlinear system under Gaussian white noise excitations. In this new technique, the original nonlinear system is replaced by another equivalent nonlinear system, structured by the polynomial formula, for which the exact solution of stationary probability density function is obtainable. Since the equivalent nonlinear system structured in this paper originates directly from certain classes of real nonlinear mechanical systems, the technique is applied to some very challenging nonlinear systems in order to show its power and efficiency. The calculated results show that applying the technique presented here can yield exact stationary solutions for the nonlinear oscillators. This is obtained by using an energy-dependent system, and for a nonlinearity of a more complex type. A more accurate approximate solution is then available, and is compared with the approximation. Application of the technique is illustrated by examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.