Abstract

Abstract The intensity attenuation of a high-power laser is a frequent task in the measurements of optical science. Laser intensity can be attenuated by inserting an optical element, such as a partial reflector, polarizer or absorption filter. These devices are, however, not always easily applicable, especially in the case of ultra-high-power lasers, because they can alter the characteristics of a laser beam or become easily damaged. In this study, we demonstrated that the intensity of a laser beam could be effectively attenuated using a random pinhole attenuator (RPA), a device with randomly distributed pinholes, without changing the beam properties. With this device, a multi-PW laser beam was successfully attenuated and the focused beam profile was measured without any alterations of its characteristics. In addition, it was confirmed that the temporal profile of a laser pulse, including the spectral phase, was preserved. Consequently, the RPA possesses significant potential for a wide range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.