Abstract
It is shown how random perturbation models can be set up for a vision algorithm sequence involving edge finding, edge linking, and gap filling. By starting with an appropriate noise model for the input data, the authors derive random perturbation models for the output data at each stage of their example sequence. These random perturbation models are useful for performing model-based theoretical comparisons of the performance of vision algorithms. Parameters of these random perturbation models are related to measures of error such as the probability of misdetection of feature units, probability of false alarm, and the probability of incorrect grouping. Since the parameters of the perturbation model at the output of an algorithm are indicators of the performance of the algorithm, one could utilize these models to automate the selection of various free parameters (thresholds) of the algorithm. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.