Abstract
Medical image segmentation is a challenging task and algorithms often struggle with the high variability of inhomogeneous clinical data, demanding different parameter settings or resulting in weak segmentation accuracy across different inputs. Assessing the uncertainty in the resulting segmentation therefore becomes crucial for both communicating with the end-user and calculating further metrics of interest based on it, for example, in tumor volumetry. In this paper, we quantify segmentation uncertainties in a energy minimisation method where computing probabilistic segmentations is non-trivial. We follow recently proposed work on random perturbation models that enables us to sample segmentations efficiently by repeatedly perturbing the energy function of the conditional random field (CRF) followed by maximum a posteriori (MAP) inference. We conduct experiments on brain tumor segmentation, with both voxel and supervoxel perturbations, and demonstrate the benefits of probabilistic segmentations by means of precision-recall curves and uncertainties in tumor volumetry along time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.