Abstract

Modelling the sentiment with context is one of the most important part in Sentiment analysis. There are various classifiers which helps in detecting and classifying it. Detection of sentiment with consideration of sarcasm would make it more accurate. But detection of sarcasm in people review is a challenging task and it may lead to wrong decision making or classification if not detected. This paper uses Decision Tree and Random forest classifiers and compares the performance of both. Here we consider the random forest as hybrid decision tree classifier. We propose that performance of random forest classifier is better than any other normal decision tree classifier with appropriate reasoning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.