Abstract

AbstractThe main purpose of this paper is to define and characterize random fields of bounded variation, that is, random fields with sample paths in the space of functions of bounded variation, and to study their mean total variation. Simple formulas are obtained for the mean total directional variation of random fields, based on known formulas for the directional variation of deterministic functions. It is also shown that the mean variation of random fields with stationary increments is proportional to the Lebesgue measure, and an expression of the constant of proportionality, called thevariation intensity, is established. This expression shows, in particular, that the variation intensity depends only on the family of two-dimensional distributions of the stationary increment random field. When restricting to random sets, the obtained results give generalizations of well-known formulas from stochastic geometry and mathematical morphology. The interest of these general results is illustrated by computing the variation intensities of several classical stationary random field and random set models, namely Gaussian random fields and excursion sets, Poisson shot noises, Boolean models, dead leaves models, and random tessellations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.