Abstract Expectiles have received increasing attention as a risk measure in risk management because of their coherency and elicitability at the level $\alpha\geq1/2$ . With a view to practical risk assessments, this paper delves into the worst-case expectile, where only partial information on the underlying distribution is available and there is no closed-form representation. We explore the asymptotic behavior of the worst-case expectile on two specified ambiguity sets: one is through the Wasserstein distance from a reference distribution and transforms this problem into a convex optimization problem via the well-known Kusuoka representation, and the other is induced by higher moment constraints. We obtain precise results in some special cases; nevertheless, there are no unified closed-form solutions. We aim to fully characterize the extreme behaviors; that is, we pursue an approximate solution as the level $\alpha $ tends to 1, which is aesthetically pleasing. As an application of our technique, we investigate the ambiguity set induced by higher moment conditions. Finally, we compare our worst-case expectile approach with a more conservative method based on stochastic order, which is referred to as ‘model aggregation’.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call