Abstract
We study a semiparametric estimation method for the random effects logistic regression when there is auxiliary covariate information about the main exposure variable. We extend the semiparametric estimator of Pepe and Fleming (1991, Journal of the American Statistical Association 86, 108-113) to the random effects model using the best linear unbiased prediction approach of Henderson (1975, Biometrics 31, 423-448). The method can be used to handle the missing covariate or mismeasured covariate data problems in a variety of real applications. Simulation study results show that the proposed method outperforms the existing methods. We analyzed a data set from the Collaborative Perinatal Project using the proposed method and found that the use of DDT increases the risk of preterm births among U.S. children.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have