Abstract

Variance components in factorial designs with balanced data are commonly estimated by equating mean squares to expected mean squares. For unbalanced data, the usual extensions of this approach are the Henderson methods, which require formulas that are rather involved. Alternatively, maximum likelihood estimation based on normality has been proposed. Although the algorithm for maximum likelihood is computationally complex, programs exist in some statistical packages. This article introduces a simpler method, that of creating a balanced data set by resampling from the original one. Revised formulas for expected mean squares are presented for the two-way case; they are easily generalized to larger factorial designs. The results of a number of simulation studies indicate that, in certain types of designs, the proposed method has performance advantages over both the Henderson Method I and maximum likelihood estimators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.