Abstract

The face is one of the easiest physiological measures and is often used to distinguish individual identities from one another. This facial recognition process uses raw information from pixel images generated through a camera which is then represented in the Principal Components Analysis method. The Principal Components Analysis method works by calculating the average flatvector pixel of images that have been stored in a database, from the average flatvector will get the value of each image eigenface and then the nearest eigenface value of the image will be found and then the nearest eigenface value of the image will be found the image of the face you want to recognize. The test results showed an overall success rate of face recognition of 82.27% with face data of 130 images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.