Abstract

The Ramsey number R(H) of a graph H is the minimum number n such that there exists a graph G on n vertices with the property that every two-coloring of its edges contains a monochromatic copy of H. In this work we study a variant of this notion, called the oriented Ramsey problem, for an acyclic oriented graph H~ , in which we require that every orientation G~ of the graph G contains a copy of H~ . We also study the threshold function for this problem in random graphs. Finally, we consider the isometric case, in which we require the copy to be isometric, by which we mean that, for every two vertices x, y 2 V (H~ ) and their respective copies x0, y0 in G~ , the distance between x and y is equal to the distance between x0 and y0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.