Abstract

Heat transfer technologies are experiencing rapid expansion as a result of the demand for efficient heating and cooling systems in the automotive, chemical, and aerospace industries. Therefore, the current study peruses an inspection of mixed convective radiative Williamson flow close to a stagnation point aggravated by a single nanoparticle (alumina) from a vertical flat plate with the impact of Hall. The convective heating of water conveying alumina (Al2O3) nanoparticles, as appropriate in engineering or industry, is investigated. Using pertinent similarity variables, the dominating equations are non-dimensionalized, and after that, via the bvp4c solver, they are numerically solved. We extensively explore the effects of many relevant parameters on axial velocity, transverse velocity, temperature profile, heat transfer, and drag force. In the opposing flow, there are two solutions seen; in the aiding flow, just one solution is found. In addition, the results designate that, due to nanofluid, the thickness of the velocity boundary layer decreases, and the thermal boundary layer width upsurges. The gradients for the branch of stable outcome escalate due to a higher Weissenberg parameter, while they decline for the branch of lower outcomes. Moreover, a magnetic field can be used to influence the flow and the properties of heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.