Abstract

The $n$th Ramanujan prime is the smallest positive integer $R_n$ such that if $x \ge R_n$, then there are at least $n$ primes in the interval $(x/2,x]$. For example, Bertrand's postulate is $R_1 = 2$. Ramanujan proved that $R_n$ exists and gave the first five values as 2, 11, 17, 29, 41. In this note, we use inequalities of Rosser and Schoenfeld to prove that $2n \log 2n < R_n < 4n \log 4n$ for all $n$, and we use the Prime Number Theorem to show that $R_n$ is asymptotic to the $2n$th prime. We also estimate the length of the longest string of consecutive Ramanujan primes among the first $n$ primes, explain why there are more twin Ramanujan primes than expected, and make three conjectures (the first has since been proved by S. Laishram).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.