Abstract

We discuss the formalization, in the Matita Interactive Theorem Prover, of some results by Chebyshev concerning the distribution of prime numbers, subsuming, as a corollary, Bertrand's postulate. Even if Chebyshev's result has been later superseded by the stronger prime number theorem, his machinery, and in particular the two functions psi and theta still play a central role in the modern development of number theory. The proof makes use of most part of the machinery of elementary arithmetics, and in particular of properties of prime numbers, gcd, products and summations, providing a natural benchmark for assessing the actual development of the arithmetical knowledge base.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.