Abstract
We used micro‐Raman spectroscopy and atomic force microscopy to study variations of the Raman spectrum as a function of the number of graphene layers. Samples were prepared by micromechanical cleaving of natural graphite on a ∼300‐nm SiO2 layer. The variations of Raman G band (∼1,580 cm−1), G* band (∼2,450 cm−1), and 2D band (∼2,700 cm−1) were observed as a function of the number of graphene layers. Raman 2D band is especially sensitive to the number of graphene layers. These features are related to the electronic band structure of graphene. Moreover, the areas of different number of graphene layers were clearly identified using spatially resolved micro‐Raman imaging spectroscopy. Polarized micro‐Raman spectroscopy on single‐layer graphene shows strong polarization dependences of double‐resonance Raman intensities. The Raman intensity of the double‐resonant 2D band is maximum when the excitation and detection polarizations are parallel and minimum when they are orthogonal, whereas that of the G band is is...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.