Abstract

The pressure-dependent phonon modes of InAs nanowires have been investigated by Raman spectroscopy under high pressure up to ∼58 GPa. X-ray diffraction measurements show that InAs nanowires at 21 GPa exhibit a phase transition from a wurtzite to an orthorhombic crystal structure, with a corresponding drastic change in the first-order Raman spectra. In the low-pressure regime, a linear increase in phonon frequencies is observed, whereas splitting between longitudinal and transversal optical phonon modes decreases as a function of applied pressure. The calculated mode Grüneisen parameters and Born’s transverse effective charge indicate that the wurtzite InAs nanowires exhibit a more covalent nature under compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.