Abstract

Raman scattering is performed to access phase stability in the boron-implanted Hg0.7Cd0.3Te with fluences ranging from 1 × 1012 to 1 × 1015 cm−2. Threshold fluence for the formation of an amorphous phase is invoked here using Thomas–Fermi statistical model. Asymmetric broadening and red shift of the Raman active HgTe-like LO phonon mode are observed with varying fluencies. Electrical properties such as sheet carrier concentration and mobility are also changed with the fluence and reach their saturated values beyond threshold fluence of 5 × 1013 cm−2. Threshold fluence for the formation of amorphous phase is also validated by the Raman measurements and electrical transport properties in the implanted layers. The excess free energy of 6.8 kJ/mole is found corresponding to the threshold fluence for phase transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call