Abstract

Germanium (Ge) plays a crucial role in setting up important functionalities for silicon-compatible photonics. Diamond cubic germanium is an extensively studied semiconductor, although its other exotic forms, like BC8, ST8, ST12 phases, may possess distinct electronic properties. We have fabricated stable ST12-Ge nanowires via a self-seeded bottom-up three phase growth in a confined supercritical toluene environment. Here, we report on the direct evidence of the presence of the ST12 phase by a combination of Raman spectroscopy and first-principles calculations using density functional theory (DFT). It is important to remark that the DFT calculation predicts all the Raman active optical phonon modes of the P 4321 structure, and it is in very good agreement with the experimental results. The phonon dynamics as a function of temperature is investigated through Raman measurements at temperatures varying from 80 to 300 K. First-order temperature coefficients for all the observed Raman modes are estimated from the linear temperature dependence of the phonon shifts. A complete set of isobaric Grüneisen parameters is reported for all Raman modes of ST12-Ge nanowire, and the values are lower compared to the same for Si, dc-Ge bulk, and Ge nanowire. These results have important implications for understanding thermal properties of ST12-Ge nanowire.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call