Abstract
The effect of high hydrostatic pressure, up to 12 GPa, on the phonon spectrum and the material stability of the two-dimensional (2D) tetragonal C60 polymer have been studied by means of Raman spectroscopy in the frequency range 100–2000 cm−1. A number of Raman modes appear in the spectrum for pressures above ∼1.4 GPa, whose intensities increase with pressure. The pressure coefficients of the majority of the phonon modes change gradually to lower values for pressures around 4.0 GPa. The deformation of the C60 molecular cage along with the change of the material to a more isotropic state (as far as its elastic properties are concerned) resulting from the application of high pressure may be causing the observed effects in the Raman spectra. These effects are reversible upon pressure release and therefore the material is stable in the pressure region investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.