Abstract
The role of autophagy in numerous physiological responses triggered by a variety of mechanisms both in states of health and disease has raised considerable interest in this cellular process. However, the current analytical tools to study autophagy are either invasive or require genetic manipulation. Raman microspectroscopy is a potentially quantitative analytical method that has been shown to be useful for the label-free, non-destructive analysis of living biological cells and tissues. We present in this study initial efforts to study autophagy using Raman spectroscopy. The response of adherent mouse and human cancer cells to starvation conditions (glutamine deprivation and amino acid deprivation) was probed by Raman spectroscopy and compared to fluorescence microscopy results using autophagy-specific markers. We also demonstrate the capability of Raman spectroscopy to monitor the recovery dynamics of starved cells and to probe the heterogeneity in the response to starvation that can arise in cell populations. Finally, this work suggests that the 718 cm(-1) Raman line associated with phospholipids may be a useful spectral marker indicative of an autophagic response to starvation stimuli. Overall, this study establishes the utility of Raman spectroscopy to non-invasively detect biologically relevant changes in live cells exposed to conditions known to trigger autophagy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.