Abstract
AbstractNanocomposites of carbon nanotubes and titanium dioxide (TiO2) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO2. In this work, we show evidence of the attachment of nanostructured TiO2 to multiwalled carbon nanotubes (MWNTs) by Raman spectroscopy. The nanostructured TiO2 was characterized by both full‐width at half‐maximum (FWHM) and the Raman shift of the TiO2 band at ca 144 cm−1, whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO2 shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO2. To complement the nanocomposite characterization, scanning electronic microscopy and X‐ray diffraction were performed. Copyright © 2011 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.